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Abstract 

We had developed an approach for estimating diffuse and specular reflectance parameters of 3D 
object from image sequence taken by a high definition TV camera with fixed position and 
direction, and the light source direction is also fixed while the object is rotating on a rotary table. 
There are many researchers had done this kind of research work for computing reflectance 
parameters from the separated diffuse component and specular component. However, in the case 
of complicated texture, the separation is very difficult or incomplete. Unlike the other methods, 
our approach estimates diffuse and specular parameters directly from the raw RGB data by 
iteratively minimizing fitting errors without knowing light source color and object color signal. 
The diffuse component and specular component can be separated using the estimated diffuse and 
specular reflectance parameters. The experimental results for both synthesized and real data 
demonstrate that the proposed approach recovers the reflectance parameters effectively and 
stably. 

 

 

1. Introduction 

Object reflectance properties had become more 
important in order to acquire object model and 
object texture for generating highly realistic 
synthesized images in computer graphics 
applications such as virtual reality, virtual 
museums and virtual studio. The research on 
object reflectance properties has attracted many 
researchers in computer vision community to 
devote their forces on it. At the early time, the 
research was emphasized on the color space 
analysis for image segmentation by partitioning a 
color histogram into clusters. There are several 
papers handling reflectance using dichromatic 

reflectance model to describe the illumination of a 
uniformly colored object in color space [1,2] for 
separating diffuse reflection component and 
specular reflection component. The separated 
components are used for segmentation of color 
image without suffering from the disturbances of 
highlight in the images [3]. However, since this 
method is based on the assumption that the object 
is uniformly colored, it cannot handle the 
reflectance from object with complex texture. 

The technique of separation of diffuse and 
specular components by applying a polarization 
filter has also been researched. The reference [4] 
introduced a technique to separate diffuse and 



specular components of a reflectance object with 
complex texture by using polarization and 
produced very impressive experimental results 
under assumption that the diffuse reflection 
component is un-polarized, the algorithm needs 
some priori knowledge in choosing thresholds for 
parameter estimation. 

There are also other techniques such as shape 
from shading [5, 6] and photometric stereo [7,8] 
for analyzing images to recover the surface 
reflectance properties along with the surface 
shape under the assumption that the real object is 
Lambertian. 

Recovering reflectance properties of object from 
color image sequence has been proposed by using 
the concept of temporal color space [9] and applied 
successfully for object shape and reflectance 
modeling [10]. This method first separates the 
diffuse and specular components and then 
computes the reflectance from the separated 
components with known calibrated specular color 
vector and measured diffuse reflection color. 

Unlike the methods mentioned above, we 
estimate reflectance properties directly from the 
image sequence to alleviate the errors during 
separation. The computed diffuse and specular 
reflectance properties are then used for 
separating the two components. The estimation of 
reflectance properties is done, by applying an 
iterative algorithm to fit the color values from 
different views to a nonlinear reflection model for 
each 3D point on the surface. This is more 
effective and stable since the fitting is based on 
the raw RGB data for computing all parameters 
in the model. 

This report is organized as follows: Section 2 
explains the experimental setup for obtaining 
color image sequence. Section 3 describes the 
reflection model and the iterative nonlinear fitting 
algorithm for estimating reflectance properties 
and separating the two reflection components. 
Section 4 shows our impressive experimental 
results of diffuse component and specular 
component using the computed reflectance 
properties and section 5 gives the conclusion and 
the future work. 

2. The experimental setup 

The experimental setup of image acquisition 

system is illustrated in Figure 1. The object whose 
reflectance properties are to be estimated is 
mounted on a rotary table. The rotation is 
controlled with a PC. The rotating direction is 
shown in the figure. The position and orientation 
of a HDTV camera relative to the rotary table are 
fixed. The point light source direction is also fixed, 
which can be measured under the assumption 
that the light is far enough to the object. It means 
that the distance between light source and object 
is larger enough than the size of object. 

 

 

 

 

 

 

 

Figure 1. The experimental setup 

A color image sequence is taken using this setup, 
by rotating the 3D object around the rotation axis 
at a fixed angle step such as 2 degree, then the 
sequence contains 180 images. We simply use a 
single incandescent lamp as the light source. Only 
the light source direction needs to be measured. 
We do not need the light source color be calibrated, 
which is different with the approach introduced in 
[9, 10]. For each point on the 3D object, the 
corresponding RGB values on each image can be 
taken by modeling approaches, using the 
calibrated camera intrinsic and extrinsic 
parameters [11]. 

3. Reflectance properties estimation 

The reflection from a 3D point is related to the 
normal of this point, light direction and view 
direction. The variation of reflection from all 
angles provides us to compute the reflectance 
properties. When the RGB data of each point on 
the 3D object are prepared, the reflectance 
properties can be analyzed. The estimation is 
performed basically for each pixel independently 
from neighboring pixels. In our implementation, 
we use a small window to alleviate the random 
noise under the assumption that the variation of 
intensities is continuous. 

TV Camera 

Rotary table 

3D object 

Light source 



3.1.  Reflectance modeling 

Figure 2 shows the geometry configuration of our 
experimental setup. The optical axis of the 
camera is collinear with z  axis and the rotation 
axis of rotary table is collinear with y  axis. The 
vector n  is the normal of a 3D point on the 
object surface and L  is the direction of point 
light source. Vector 'L  and 'n  are the 
projection of L  and n  on to XOZ  plane. Lϕ  
is the angle between the light source and y  axis; 

Lθ is the angle between the projection 'L  of L  
and  z  axis. The light source direction Lϕ  and 

Lθ  can be measured in advance. nϕ  is the angle 
between normal and y  axis; nθ  is the angle 
between the projection of normal vector and z  
axis. 

 

 

 

 

 

 

 

 

Figure 2. Geometry configuration 

Since the object surface reflectance can be 
modeled as the linear combination of diffuse 
component and specular component for each 
channel, we use the simplified Torrance -Sparrow 
model [12] to describe this combination in 
following equation: 
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Here nL ⋅  is the inner product of two vectors. 
dK  is the diffuse reflection parameter and sK  is 

the specular reflection parameter. Parameter α  
is the angle between surface normal and the 
bisector of the light source direction and view 
direction. σ  is the standard deviation of a facet 
slope of the Torrance-Sparrow model. Let the 
surface normal be ),,( rqpn = . Since the light 

source direction is fixed and the object is rotating, 
it also can be considered as that the object is fixed 
and the light source is rotating around the same 
rotation axis. Therefore, parameterθandα are 
regarded as variable and other parameters are 
fixed. We rewrite Lθ  as θ and equation (1) is 
reformed as following function for each 3D point: 
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What we need to estimate is the parameters in 
the above equation: pKA d= , qKB d= , 

rKC d= , sKD = , E  and σ2=F . After 
the parameters in equation (2) are computed, the 
reflection parameter Kd and surface normal are 
calculated using following equations. Note that 
the surface normal is normalized. 
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Moreover the two angles of surface normal as 
shown in figure 2 can also be computed: 
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The specular reflection parameter Ks is the same 
as the parameter D and the standard deviation 

2/F=σ . Since 6 parameters are unknown in 
the equation (2), mathematically we need at least 
6 samples from 6 frames to fit the intensity 
variation. 

3.2.  Parameter fitting 

In order to estimate each parameter in equation 
(2) on each channel, our technique minimize the 
sum of the squared intensity errors over all 
corresponding pixels on each view as shown the 
following equation:  
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This nonlinear minimization problem is solved in 
our implementation by applying Levenberg 
Marquardt iterative method [13]. This method 
needs taking the first derivatives of error respect 
to each unknown parameter. For example, the 
first derivative of error with respect to F is as (6). 

x  

y  

z  

V  

n  

L  

'L  

'n  

nθ

Lθ
nϕ  

Lϕ  



FF
EDe

F
e F

E
k 12

22

⋅





 −
⋅−=

∂
∂ 






 −

− θθ

       (6) 

From these first derivatives, the approximate 
symmetrical Hessian matrix [ ]ijpP =  and the 
weighted gradient vector { }iqQ = is computed 
with components as in the following equations: 
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Where im  and jm  represent the parameters A, 
B, C, D, E and F in function (2). The nonlinear 
problem now becomes a linear algebra problem to 
compute the increment of parameters: 

QmIP =∆+ )( λ                    (8) 
Hereλis a time varying stabilization parameter 
which is set to be 0.0001 as recommended in [13]. 
Solving the system (8) and updating the 
parameters im  iteratively until either the error 
is below a threshold or a fixed number of steps 
have been completed will give us the final value of 
parameters as 

mmm tt ∆+←+1                     (9) 
Unfortunately, this nonlinear iterative method 
only finds the locally optimal solution. This means 
that the minimization needs a good initial guess 
for each parameter. With bad initial guess, the 
algorithm may not converge to the expected 
solution. In our implementation, we determine 
the initial guess for parameters using following 
method. The initial D value is the peak value in 
the measured data for each 3D point. The initial 
E value is the position of the peak. The initial F 
value is empirically given between 0.01 and 1.0. 
We use 0.08 as initial parameter F value in the 
implementation. The initial values of A, B, and C 
are treated as the same: the value whose position 
is far away from the peak in the measured data. 
This method is something similar to the method 
in [9] for computing body color vector, since the 
peak is considered to be approximate to the light 
source color vector. However, the difference is that 
we do not fix the body color vector and light source 
color vector. These vectors will be refined in the 
algorithm, because that the initial guess is not 
accurate enough for some reasons such as noise, 
measurement error and environment light etc. 

3.3. Separating the two components 

When the parameters in function (2) are 
estimated, the reflectance properties and surface 
normal can be computed as equation (3) and (4). 
We have three solutions for the surface normal 
from three channels. Since the surface normal is 
invariant with each channel, these solutions are 
averaged as the final normal. The mean of 
Gaussian distribution and the standard deviation 
of the facet slope of a 3D point are intrinsic. 
Therefore we also compute their average value 
from the solution of three channels. Using the 
parameter values estimated, the diffuse reflection 
and specular reflection components of reflection in 
equation (2) is computed: 
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Then the separated diffuse component and 
specular component of original reflectance are: 
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Since the two components of equation (10) are 
computed from the model that has error with the 
original data, we use the results of equation (11) 
as the separated diffuse and specular reflection 
components, in which some failure points are 
interpolated from neighbor pixels.  

3.4. Summary of algorithm 

The following is the summary of the proposed 
algorithm for estimating the reflectance 
properties and the object shape, separating the 
diffuse reflection and specular reflection 
components from the original reflection data. The 
inputs are the color data taken for a surface point 
with the corresponding pixel on the image 
sequence and the light direction. The outputs are 
reflectance properties, object shape and the 
separated diffuse and specular reflection 
components. 

The algorithm loops on the following steps over 
each surface point: 
① Compute the initial guess for each fitting 

parameter in equation (2); 
② Estimate the optimal parameters for 

minimizing the fitting error (5); 
③ Compute the reflectance properties and 

surface normal; 
④ Calculate the reflection components from the 

original data using the computed reflectance 



properties and surface normal. 
The advantage of using Levenberg Marquardt 
over straightforward gradient descent is that it 
converges in less iteration. 

4. Experimental Results 

The experimental system arrangement is 
illustrated in figure 1 as described in section 2. 

Table 1. Simulation result 

 Parameter values 
used for synthesis 

Estimated 
parameter values 

Kdr 0.777543 0.7775430 

Kdg 0.392522 0.3925219 

Kdb 0.491277 0.4912774 

Ksr 0.498124 0.4981243 

Ksg 0.586319 0.5863187 

Ksb 0.638829 0.6388292 

θL 35.0  ゚  

φL 85.0  ゚  

θn 10.0  ゚ 10.034438  ゚

φn 90.0  ゚ 90.000583  ゚

σ 0.05 0.0500175 

Our experiments are performed on synthesized 
data and the real data obtained from the image 
sequence. In order to verify the proposed 
algorithm for estimating reflectance properties, 
we synthesized a group of data using the 
mechanism similar to the experimental setup. 
The simulation results are shown in table 1. Here, 
Kdr, Kdg, Kdb and Ksr, Ksg, Ksb are diffuse and 
specular reflection parameters in RGB channels 

respectively. The other parameters are as 
illustrated as in figure 2 or as explained as in 
section 3. We know that, from the table 1, the 
estimated values are very close to the synthesis 
values. The curves of synthesized data in each 
channel are shown in figure 3 (a). The curves of 
separated two components using the proposed 
algorithm are shown in figure 3 (b). 

In the experiment with real data, we have taken a 
sequence of images of a vase with complicated 
texture on it. The camera and light source are 
fixed while the 3D object mounted on a rotary 
table and rotated around the rotation axis. The 
RGB intensities of all surface points are obtained 
using modeling method. Currently, in this 
experiment, although we had taken 180 image 
frames around the object, for each 3D point on the 
object, we took the sampled RGB data from 31 
frames with o4  interval. 

Figure 4 (a) shows one of image from the image 
sequence. We first estimate the reflectance 
parameters and then separate the two 
components. Figure 4 (b) and (c) show the 
separated diffuse component and specular 
component respectively. Both from the simulation 
and the experiment with real data, it is known 
that the proposed algorithm is effective and the 
computation is stable. 

5. Conclusion 

We have studied an approach for estimating 
reflectance properties by observing a real object 
and successfully separated the diffuse reflection 
component and specular reflection component 
from the real images. One of key features of the 
proposed approach is that we estimate reflectance  



    
(a)                                              (b) 

Figure 3. Synthesized RGB data (a) and separated two components (b) 

       
(a)                             (b)                               (c) 

Figure 4. Original image (a); separated diffuse component (b) and specular component (c).

properties first before separation to eliminate 
error produced during separation; another feature 
is that we estimate both diffuse and specular 
parameters at the same time without knowing 
body color and light source color, which makes the 
proposed approach more effective and stable. We 
can observe that the proposed approach can be 
used for objects with complicated texture and 
with high specular reflectance. Generally it can be 
applied to any object shape if the sampled 
intensity data can be obtained. We also have 
noticed that the small area corresponding to the 
highlight in the diffuse component is not so 
natural due to the camera�s dynamic range. At the 
current stage, the algorithm can only be used for 
environment with only one single point light 
source. In our future work, experiments with 
object shape and the multi-light source and area 
light source will be under our investigation. 
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