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Abstract. This paper presents a combinatorial (decision tree induc-
tion) technique for transparent surface modeling from polarization im-
ages. This technique simultaneously uses the object’s symmetry, brewster
angle, and degree of polarization to select accurate reference points. The
reference points contain information about surface’s normals position
and direction at near occluding boundary. We reconstruct rotationally
symmetric objects by rotating these reference points.

1 Introduction

The simplest way to reconstruct a rotationally symmetric object is by rotating its
silhouette [1]. If the object is transparent, however, finding its silhouette is very
difficult due to lack of body reflection and inter-reflection effect. On the other
hand, current techniques for transparent surface modeling are neither efficient
nor effective in dealing with rotationally symmetric transparent objects. Because
it relies on complicated light setting aimed to illuminate the whole surface of
the object and it suffered much from undesirable inter-reflection effects.

In this study, we pursue a way to obtain accurate reference points that when
they are rotated will give accurate surface. To the best of our knowledge, no
proposed methods elaborating the extraction of such reference points. The in-
duction of accurate reference points is difficult because it is sensitive to the light
wave length, surface’s microstructure, bias index, and noise. The key ideas of our
method are summarized as follows. First, it is a decision tree induction technique
that simultaneously uses object’s symmetry, brewster angle, and degree of polar-
ization (DOP) to extract accurate reference points. This technique directly solves
the ambiguity problem in determining correct incident angle. Second, it is not
necessary to illuminate the whole surface of the object, but only the area near
the object’s occluding boundary. Third, it gives approximate initial condition
for faster iterative relaxation by rotating the normal positions and directions. In
this paper, we investigate the effectiveness of this method in reconstructing an
ideal cylindrical acrylic object and a more complicated object such as a plastic
coca-cola bottle filled with water shown in Figure 1.
? This work is supported by the National Institute of Information and Communications

Technology (NICT) of Japan.



2 Mohamad Ivan Fanany et al.

Fig. 1. Transparent objects to be reconstructed.

2 Related works

Transparent surface modeling is a challenging and important problem in com-
puter vision and graphics communities. Despite recent advances in opaque sur-
face modeling, transparent surface modeling relatively has not received much
attention. Only recently, some prospective techniques for modeling transpar-
ent or specular surface based on polarization images have emerged [2–5]. These
techniques, however, commonly face two fundamental difficulties. First, since
transparent object has only surface reflection and little body reflection, we have
to acquire as much the surface reflection as possible to infer the whole surface
area. Second, since the correspondence between the degree of polarization and
the obtained incident angle or surface normal is not one to one, we have to solve
the ambiguity of selecting the correct value. The first difficulty, namely lack of
surface reflection problem, is previously addressed by introducing very compli-
cated light settings such as continuous spherical diffuser illuminated with many
point light sources located around the sphere. Such light setting (referred to as
photometric sampler firstly proposed by Nayar, et al., [6]) has two limitations: it
restricts the object’s diameter to be sufficiently small compared to the diffuser’s
diameter and it suffered much from undesirable inter-reflections. The second dif-
ficulty, namely the ambiguity problem, is previously solved by introducing other
sources of information such as thermal radiation [3], or new view image [2]. The
necessity of such additional information that is not readily available leads to
even more impractical and time consuming implementation.

Many transparent objects around us exhibit some form of symmetry. For
opaque objects, symmetry is well known of giving a powerful concept which
facilitates object characterization and modeling. For instance, the implicit re-
dundancy in symmetric models guides reconstruction process [7, 8], axes of sym-
metry provide a method for defining a coordinate system for models [9], and
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symmetries give meaningful hints for shape classification and recognition [10,
11]. For transparent objects, however, the significance of symmetry is largely
unknown. Because the symmetry is obscured by highlights, lack of body reflec-
tion, and inter-reflections. In fact, these obscuring factors make the methods
aimed for opaque surface fail to deal with transparent objects even if the objects
are simpler such as those which have symmetrical properties.

Decision trees represent a simple and powerful method of induction from
labeled instances [12]. One of the strength of decision tree compares to other
methods of induction is that it can be used in situations where considerable
uncertainty is present and the representation of the instances is in terms of
symbolic or fuzzy attributes [13]. In this paper, we implement a practical decision
tree induction technique based on polarization analysis, while at the same time,
we avoid the difficulties faced in current transparent surface modeling techniques.
Our decision tree directly resolves the ambiguity problem and produces more
accurate reference vectors.

3 Polarization analysis

A more thorough discussion on how to obtain surface normals of transparent
surface from polarization analysis of reflected light based on Fresnel equation
could be found in [5, 2]. When unpolarized light is incident on dielectric trans-
parent surface with an oblique angle, it will be partially polarized. The total
intensity of the reflected light received by camera after passing a polarizer filter
is

Is = Imax + Imin, (1)

where

Imax =
F⊥

F⊥ + F‖
, Imin =

F‖
F⊥ + F‖

. (2)

The intensity reflectance F‖ and F⊥ are referred to as the Fresnel reflection
coefficients. They are defined as

F‖ =
tan2(φ− φ

′
)

tan2(φ + φ′)
,

F⊥ = − sin2(φ− φ
′
)

sin2(φ + φ′)
, (3)

where φ and φ
′

are respectively incident and refraction angles. There is φ that
can make F‖ = 0, that is φ = φb which is called as Brewster angle. The φb is
given by φ + φ

′
= π/2 and Snell’s law as

φb = arctan(n), (4)

where n is the bias index.
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The degree of polarization (DOP) is defined as

ρ =
Imax − Imin

Imax + Imin
. (5)

For unpolarized light Imax = Imin = 1
2Is hence ρ = 0. When φ = φb (Brewster

angle), then F‖ = 0. Hence Imin = 0 so ρ = 1. Combining Equations (2), (3),
and (5), we can rewrite the DOP as

ρ =
2 sinφ tanφ(n2 − sin2 φ)1/2

n2 − sin2 φ + sin2 φ tan2 φ
. (6)

Thus, theoretically if we know the object’s bias index n and ρ, we can estimate
φ, which in turn will give the surface normal N (α, ζ), where α is azimuth and ζ
is zenith angles. But practically, it is difficult due to the following factors: ambi-
guity of estimated (see [5, 2]), relation between light wave length and surface’s
microstructure, and noise.

4 Light source setting

In this study, we use five linear extended light sources (see Figure 2) putted in
parallel with respect to the rotational axis of the object to be reconstructed. Such
configuration is aimed to extract the boundary normal vectors. A set of reference
vectors can later be chosen from these boundary normal vectors. Then we can
infer the whole surface seen from the camera by rotating these reference vectors.
Theoretically, we can use only one linear extended light source. But practically,
there is no guarantee that using only one source would provide adequate number
of boundary normal vectors due to noise and complexity of the object shape. So
we suggest to use more than one light source. Considering such placement of the
camera with respect to the light sources and the object, the only possible surface
reflections are occurred in the left half area near occluding boundary. Contrary,
the lights coming from the right half area of the surface received no polarization
since most of these lights are actually transmitted instead of reflected.

Thus, if we take the simple cylindrical object and put it in this light setting,
we perceive two different highlight areas, i.e., A and B, as shown in Figure 3(a).
The highlights in A come from the reflection of light by near occluding boundary
areas. Whereas, the highlights in B come from the transmission of light by the
back surface. Hence, if we analyze the degree of polarization (DOP) image in
Figure 3(b), we find that the DOP of area A is relatively high, but in the contrary,
the DOP in B is relatively too small to be observed. Realizing such condition,
we could expect that correct surface normal extractable in A. Therefore, we can
rotate the surface normal obtained in A and override the surface normal in B.

The advantages of this light setting are as follows. First, it is simpler because
no diffuser is needed. Second, no restriction on the diameter of the object to be
reconstructed relative to the diameter of diffuser. Third, less inter-reflection is
incorporated in our light setting. In omni-directional light source using diffuser,
such inter-reflection shown to cause inaccurate reconstruction [2].
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Fig. 2. Light source setting.

Fig. 3. The polarization image (a) and DOP image (b) of cylinder object put in our
light setting.
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5 Reference points selection

Equation (5) allows us to measure the DOP by rotating a polarization filter
placed in front of camera. By rotating the polarization filter, we obtain a sequence
of images of an object. We measure from 0 to 180 degrees at 5 intervals. From this
process, we obtain 37 images. We observe variance of intensity at each pixel of
the 37 images. By using the least-squares minimization, we fit a sinusoidal curve
to those intensities and then determine the maximum and minimum intensities,
Imax and Imin. For example we can observe the intensities and its fitted curves
(Figure 4) of two pixels in one scanned line. We observe that smaller degree of
polarization ρ is more sensitive to noise, so we expect accurate surface’s normal
cannot be produced in these areas.

Fig. 4. Curve fitting of intensities of smaller ρ (left) and higher ρ (right)

Using our light source setting mentioned in Section 4 we will observe DOP
image as shown in Figure 3. Since the DOP is high on specular area (the area A
in Figure 3), we expect that accurate surface’s normal N (α, ζ) in this area can
be extracted. α is extracted by measuring the polarization rotation angle θ that
give Imax. ζ is extracted from Equation (6) after we know the ρ (DOP) from
Equation (5) and bias index n. In this study, we used Hi-Vision camera with
long focal length and observe the zoomed in object. Thus we can assume that
we observe orthographic projection image where ζ = φ (see light reflection from
the top of rotationally symmetric object in Figure 5). In addition, we also use
normal density filter to reduce undesirable noise.

In a scanned line L in the DOP image there will be a set of points P =
{p1, p2, · · · , pk} where the ρ(p1), ρ(p2), · · · , ρ(pk) ≥ ρth, where ρth is a given
DOP threshold. We call P as a set of valid points. Since the ρ(pi) are great
we can expect to find good candidate of reference vectors there. But this does
not guarantee that the extracted reference vectors or points are the ones with
correct normal direction (in this case it is ζ, since α is measured independently
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Fig. 5. Inferencing the zenith ζ and height h from orthographic image

by observing θ) and position (in this case, it is the height h = R/ cos ζ (see
Figure 5).

This study pursue a way to extract such accurate reference vectors for rota-
tion. We investigate three different ways to do this. First, the simplest way is by
taking the point pk where ρ(pk) > all other points in P . Second, take the repre-
sentational average of vector position h̄ and direction ζ̄ where h̄ = Σh(pi)/#P
(i = 0, 1, . . . , #P ; where #P is the cardinality of the set P ) and ζ̄ = Σζ(pi/#P ).
These two simple ways tend to generate reference vectors with wrong h and ζ.
In the first way, the ambiguity problem is not addressed and then inconsistent ζs
may be generated even though the candidate vector’s pixel positions are closed.
In the second way, in addition to not resolving the ambiguity problem, it aver-
ages these inconsistent candidate vectors. According to our observation the error
that can be caused by the second way might be almost 0.5R.

After observing these two failed methods, we propose the third way, that
is a decision tree induction algorithm shown in Figure 6. In this decision tree,
the observed specular reflections are obtained on the half left surface area of
the rotational symmetric object. When the the observed specular reflection are
obtained from the half right area of the object, the second level subtree (ζ <
φb and ζ ≥ φb) should be interchanged. This decision tree directly solve the
ambiguity problem by incorporating the object symmetry, brewster angle and
DOP. The method is easier to understand by direct observation on how this is
applied on real data sample (see Subsection 5.1).

Furthermore, the surface obtained by rotating the reference points can be
used as approximate initial condition for faster relaxation to recover surface’s
height from gradient or needle map (Please refer to [14], pages 48–49). We can
also further imposes smoothing constraint to the resulted azimuths α and zeniths
ζ (see [15]).
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Fig. 6. Decision tree induction of referencing accurate reference points

5.1 Direct observation

As an example, we analyze the polarization image of cylindrical acrylic object
(Fig. 3. b). The size of the image is 280 pixels width and 540 pixels height.
According to a catalogue [16], the refractive index for acrylic object 1.48 ∼ 1.50.
If we take the n = 1.5 then the Brewster angle is φb = 0.983 radian. The DOP
histogram of this image is shown in Figure 7. Let us take three arbitrary scanned
lines by setting the DOP threshold to ρth = 0.68. We obtain two candidate
vectors on a scanned line at y = 4, four vectors at y = 10, and three vectors at
y = 140. The azimuth and zenith angles are measured in radian. We list these
candidate vectors as follows.

y = 4: \\
c = 0, az = 1.5468788, ze = 0.6981317, dop = 0.6918033 \\
c = 1, az = 1.5468788, ze = 1.2566371, dop = 0.6819789 \\
y = 10: \\
c = 0, az = 1.5468788, ze = 1.2566371, dop = 0.6822431 \\
c = 1, az = 1.5468788, ze = 0.7155850, dop = 0.7058824 \\
c = 2, az = 1.6341454, ze = 0.6981317, dop = 0.6917808 \\
c = 3, az = 1.6341454, ze = 1.2566371, dop = 0.6830189 \\
y = 140: \\
c = 0, az = 1.5468788, ze = 0.6981317, dop = 0.7000000 \\
c = 1, az = 1.5468788, ze = 1.2391838, dop = 0.7213623 \\
c = 2, az = 1.5468788, ze = 0.7155850, dop = 0.7077922 \\

Each scanned line is processed independently. At scanned line y = 4, we dis-
card the candidate c = 1 because its zenith angle is greater that Brewster angle.
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At y = 10, we discard the candidates c = 0 and c = 3, and select the c = 1. At
y = 140, we discard c = 1, even though its DOP is the greatest among the three
candidates, and we select c = 2. At these three scanned lines, we end up with
three reference vectors give two different zenith angles: 0.6981317, 0.7155850.
These two angles give height estimates h = 0.77R and h = 0.75R, which are
reasonably close.

Fig. 7. The DOP histogram of Fig. 3(b)

6 Experiments

In this paper, we investigate the effectiveness of our method in reconstructing
a simple cylindrical acrylic object and a more complicated object such as a
coca-cola bottle filled with water. Beside more complex, the coca-cola bottle
also contains concavities. The normal reconstruction for the two objects are
shown in Figure 8. Even though we observe that the generated normals are not
perfectly smooth, the estimated height from this normals shown in Figure 9 are
acceptable. This reconstructed shapes are the results of relaxation procedure
([14]) by putting the shape and normals from our rotation procedure as initial
conditions. By doing so, the relaxation process converges faster (in average, it
needs only about 12 iterations) to a smoother and more accurate surface.

We tried to evaluate quantitatively the error generated by our methods. For
the acrylic cylindrical object we measured its diameter as 3.0 cm. For the coca-
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Fig. 8. reconstructed normals

cola bottle we measured several diameters of its parts. The average error for the
cylindrical object is 0.038 cm, while for the coca-cola bottle is 0.147 cm.

7 Conclusion

In this paper, we present a simple decision tree induction for transparent surface
modeling of rotationally symmetric objects. This decision tree allows practical
induction of accurate reference vectors for rotation. The experiment results also
show that our light configuration, which allows the decision tree induction is
reasonably efficient and effective for reconstructing rotationally symmetric ob-
jects. The significance of this study are as follows. First, this will open ways for
more practical surface reconstruction based on simple decision tree. Second, the
reconstructed object could provide initial estimation that further expanded to
deal with concavity and inter-reflection. Even though our method is limited to
work on rotationally symmetric objects, it can also further used for non sym-
metric objects by extracting the symmetries contained in such non symmetric
objets. In our view, doing so might be more efficient rather than directly deal
with non-symmetric objects.



Combinatorial Transparent Surface Modeling 11

Fig. 9. Reconstructed shapes
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