
Least Distortion Texture Map Construction
 From Multiple Views

Xiaohua Zhang＊ Yoshinari Nakanishi＊ Kiichi Kobayashi＊
Hideki Mitsumine＊＊ Suguru Saito＊＊＊

＊NHK Engineering Services Inc.
＊＊NHK Science and Technical Research Laboratories

＊＊＊Tokyo Institute of Technology

Abstract

Texture mapping is an important technique to increase the intricate details covering the 3D
models. We propose an algorithm that enables high quality texture map construction through the
projection from multiple views onto 3D model. The extracted textures for each polygon was
packed onto tessellated rectangular texture map. To solve the discontinuity problem along the
edge of triangle, the texture outside each triangle in image space are also stored into texture
triangle without increasing the extra memories. The optimal correspondence between the triangle
vertices in image space and the triangle vertices in texture space make the constructed texture
only have the least warping distortion. The experimental results are presented to verify our
algorithm.

1. Introduction

Texture mapping is an important technique to
increase the intricate and abundant details
covering the colored 3D surface models [1]. Purely
synthesized textures are applied to the 3D model
in many applications such as driving and flying
simulators. The incorporation of 3D model and
real scene can provide impact ``visualized reality"
which is required in many applications such as
virtual museum, electronic catalogs, architecture
design etc. In general, texture map is constructed
from real images, accompanying with the
parameterized 3D model. Each vertex in the 3D
model is attached with texture coordinates in the
texture maps.

Several approaches have been proposed to
construct texture map from range images or
photographs. Marc Soucy et al. proposed a
texture-mapping approach for the compression of
colored 3D triangulations from several range
images [2], while Yu used the same scheme to
place the synthetic triangular texture patches into
texture map and obtained texture coordinates [3].
It is known that the adjacent triangles in 3D

object space will not be adjacent in texture space.
If the triangles on image plane are fetched
without any extension and directly stored, it will
result in aliasing along the edges of triangle
patches during rendering 3D models. In many
cases, the triangles in image space and texture
space are not similar triangles. The least
distortion should be considered when mapping
triangles from the image space to the texture
space.

Bernardini et al. proposed a method to construct
accurate digital models of scanned objects by
integrating high-quality texture and normal maps
with geometric data [4]. Rather than
parameterizing the mesh into triangles, they
partition the surface into patches to use
mip-mapping technique. The occlusions are
handled by comparing depth values stored in
pre-computed depth buffers.

In this paper, we propose a method to construct
texture map from multiple views with known 3D
geometric data of object and known camera
intrinsic and extrinsic parameters. To render new
views without seams between triangles whose

textures are not adjacent in texture space, we use
a technique of triangle contraction and extension
during texture map construction, which avoids
the edge aliasing due to the lack of information
along the edges of texture triangles. Least
distortion is achieved when warping triangles
from the image space to the texture space by
considering the optimal vertex correspondence
between two spaces. The occlusions are detected
on image plane and the depths are computed and
compared only when occlusions occurred for this
view.

2. OVERVIEW

The computational framework for constructing
texture map relates to coordinate system in
several spaces such as view spaces, image spaces
and texture spaces as shown in Fig. 1. The inputs
to this framework are 3D object model that has
been triangulated and camera parameters. The
3D model was created using a method proposed in
[5] and the camera was calibrated through an
approach similar to [6]. The 3D model has its own
3D object space; which is transformed to the view
space using the calibrated camera's extrinsic
parameters before the texture map construction.
Since multiple views are used, each image spaces
correspond to each view point while the texture
space is independent of view space as illustrated
in figure 1.

Image Space

Image Space
Image Space

Texture Space
Object Space

Fig.1. The flow of texture map construction

Suppose the triangle vertices order is
counter-clockwise and only when the front of a
triangle faces to the viewpoint it is possibly visible.
Not all triangular polygons of 3D triangulation
model are visible in the view space from a specific

viewpoint. The visibility test for a triangle in view
space must be carried out in the obstacle-free case.
If the triangle passed the visibility test, it is
projected onto 2D image space. However, even a
triangle passed this test, it is still invisible if it is
occluded by another triangle which is more nearer
to the camera. The occlusion test is very
important to take the correct textures. It should
be noted that the visibility test is carried out in
the 3D view space, while the occlusion test is
carried out in 2D image space corresponding to
the specific viewpoints. If a triangle passed both
the visibility test and occlusion test, now it could
be used to compute the texture of this triangle.

A 3D triangle may be visible from multiple view
points, so there are several image triangles
corresponding to this 3D triangle whose texture
can be taken by weighted blending multiple
image triangles or taken from only one image
triangle which has the largest area compared
with other triangles.

During texture space tessellation, the size of this
texture triangle and the location should be
decided to store the texture of a 3D triangle. The
size is computed as the longest length of the
image triangle with the largest area. To
manipulate texture space easily, the size is
extended to a power of 2. The texture triangles
are arranged from the largest size to the smallest
size.

Since the adjacent triangles in 3D object space
will not be adjacent to each other in texture space,
the discontinuities will occurs along the edges of
rendered triangles. We use a technique of
contracting texture triangle and extending image
triangle to solve this problem. The transformation
from image space to texture space often cause
some shape changes, which will distort the
rendered result. We use an optimal vertices
correspondence between image triangle and
texture triangle to alleviate the unpleased
distortions.

3. VISIBILITY TEST AND OCCLUSION TEST

3.1. Visibility Test
We first detect if the front face of triangle is visible
or not when there is no obstacle between the
viewpoint and the triangle in 3D view space. We
suppose a camera has view field less than o180

and all vertices of any triangle are inside this
view field. For a triangle 210 PPP∆ , its normal

vector is computed as
→→→

×= 2010 PPPPN . Instead
of using the view direction along camera optical
axis, the ray from viewpoint to the triangle is used
for detecting the visibility. The inverse ray vector
from viewpoint to one of vertex, for example,

vertex 0P is
→

R . If the dot product
→→

⋅ RN is less
than zero, the triangle is visible or else invisible.

3.2. Occlusion Test

Even if a triangle passed the above visibility test,
it may not be visible if it is occluded by others
triangles. The occlusion test is required for
assuring that the texture of a triangle is
obtainable or not. The occlusion test is a
time-costly task, so we use a strategy to exclude
the triangles that are far from the current
triangle on 2D image space. For a 3D triangle,
suppose its projection on an image plane is A as
shown in Fig. 2. We first detect if it has cross
intersection with other triangles on the same 2D
image space.

For a 2D image triangle A , its boundary box S
is computed as shown in figure 2 (a). Any triangle
that does not intersect with this boundary box is
excluded. This exclusion is completed by only
using comparisons without any arithmetic
computation.

S

A

S

A

(a) (b)

(c) (d)

S

A
B

B

S

AB

Fig. 2. The occlusion test

Only if a triangle B intersects with the
boundary box S of triangle A , it may intersect
with triangle A . The intersection of triangle A

with B only has two cases: (1) The triangle A
contains at least one of vertices of triangle B , or
triangle B contains at least one of vertices of
triangle A as shown in figure 2 (b) and (c); (2)
Any vertex of A or B is not inside triangle B
or A , but the edges of both triangles intersect
with each other as shown in figure 2(d). Since the
judgment of point-in-triangle needs less
computation than that of edge-intersection, we
detect the first case, if failed, then detect the
second case. If the vertex of triangle A is not
inside any triangle and any triangle does not
contain the vertex of triangle A and the edge of
triangle A does not intersect with the edges of
any triangle, then the triangle A does not
intersect with any triangle on the 2D image plane.
So it is not occluded by any triangle in 3D view
space, it is visible. If triangle A intersects any
triangle B on 2D image plane, and the
corresponding 3D triangle of A is far from the
viewpoint than the corresponding 3D triangle of
B , the triangle A is invisible.

4. TEXTURE SPACE TESSELLATION

For any 3D triangle in the view space, it may be
seen from several viewpoints. The texture of this
triangle is taken from these views if the projected
2D image triangle in a view space passed the
visibility test and occlusion test. The acquired
texture of a triangle is stored in the texture space.
For the texture of a 3D triangle, its size and
location in the texture space should be decided
before storing.

In our implementation, the constructed texture
map consists of several texture image files. Most
renderers such as developed by using OpenGL
require the widths and heights of texture image
files are powers of 2, for example, 92512 =
pixels (from now on, all units are in pixels).

Given a 3D triangle DT 3 , its projections onto
several image planes are computed. Let the image
triangles that passed the visibility test and
occlusion test are I

n
II TTT ,,, 21 L . Triangle

)1(nkT Ik ≤≤ has the largest area among these
image triangles, which has more texture
information than others. The length of longest
edge of triangle I

kT is calculated as e , which is

used to decide the size of texture triangle in
texture space. To allocate the texture triangles
easily in texture space, the length e is extended
to d as a power of 2. Any two of texture
triangles having the same size d combines to a
square. However, when stored in the texture
space, the second triangle has a size 1−d . Note
that the length of the longest edge e of projected
image triangle is unpredictable, it should be
limited in a definite range, such as [8,128] to
avoid being too large or too small.

d

d 1−d

1−d

(a) (b)

Fig.3. The texture space tessellation

The 3D triangles are scanned in the order of sizes
of their texture triangles, from the largest one to
the smallest one. The texture space tessellation is
illustrated in Fig.3 (a): two triangles form a
square and (b): the allocation of texture triangles.

5. LEAST DISTORTION

The distortion in a rendered image may have a
variety of sources. The texture triangles in the
texture space are isosceles right triangles, while
the triangles in the image space may be arbitrary.
The optimal correspondence between the vertices
of triangles in both spaces can reduce the
distortion of mapping from the image space to the
texture space. Since triangles being adjacent in
3D object space are not adjacent to each other in
the texture space, the rendered edges of triangles
are aliased in the resulted new views. This is
because the renderer takes the pixels outside a
triangle in the texture space when rendering a
pixel near to or on the triangle edge in the image
space, while the pixels outside a triangle have no
any relation with this triangle - the discontinuity
between triangles in the texture space. Note that

the optimal correspondence and triangle
extension are only applied to the image triangles
that passed the visibility test and occlusion test.

5.1. Optimal Vertices Correspondence

The vertex correspondence between a triangle in
image space and a triangle in texture space is
arbitrary according to the vertices order in the
original 3D object model. This correspondence is
not an optimal one and will cause heavy
distortion when mapping from the image space to
the texture space. For example, the
correspondence of a vertex with obtuse angle to a
vertex with o45 will cause the lost of texture
information. We can refer to the figure 4 that the
vertex correspondence

)',','(),,(BACCBA iii ↔ in the image and
texture spaces is not a best correspondence.
However, by observing the shape of triangles in
figure 4, perhaps the optimal correspondence is

)',','(),,(CBACBA iii ↔ .

We hope the vertex with larger angle of triangle
in the image space corresponds to the vertices
with large angle of triangle in the texture space
and vertex with smaller angle corresponds to the
vertices with smaller angle. This completed by
comparing the lengths of edge since the longest
edge has the largest opposite angle. This avoids
the time-costly angle computations.

5.2. Contraction And Extention

We used a technique to reduce the distortion
caused by the triangle edge aliasing. The
technique is to contract each texture triangle in
texture space and correspondently extend each
image triangle in image space. The contraction
and extension are applied after vertex optimal
correspondence. The concepts of contraction and
extension are illustrated in Fig. 4.

When the size and location of a texture triangle
has been decided, its region is also decided. If we
just fetch the texture from image space and store
it in this texture triangle, we lost the pixel
information around the image triangle, which will
results in edge aliasing when rendering the object.
As shown in figure 4(a), the computed current
texture triangle is ABC∆ . We hope to store both
the texture of image triangle and the neighboring
pixel information around the image triangle. We

contract the triangle ABC∆ to the shadowed
triangle ''' CBA∆ in the figure, so that the
texture is stored in ''' CBA∆ while the
neighboring pixel information is stored in the gap
between ABC∆ and ''' CBA∆ .

The distance dC between the correspondent
edges of ABC∆ and ''' CBA∆ called
contraction distance should be carefully chosen. If
the distance is too small, there is no enough space
for storing the neighboring pixel information and
then the edge aliasing still exists. If the distance
is too large, there is too large gap space for storing
the neighboring pixels while only the pixels that
are very near to the image triangle should be
stored. On the other hand, since the size of
texture triangle ABC∆ is already decided, if the
contraction distance is too large, the region of

''' CBA∆ will become too small to store the
triangle texture and will possibly cause heavy
distortion in the rendered results. Theoretically,
the minimum contraction distance in texture
space is related with the interpolation method for
sampling used by the renderer. In the case of
nearest neighbor point sampling, the distance is

2/2 and in the case of bilinear interpolation,
the distance is 2 , while the cubic interpolation
needs contraction distance of 22 . The
computation of texture triangle contraction in the
texture space is simple, since we known the
vertices of ABC∆ and the contraction distance.

Contraction in texture space

Extension in image spaceA

BC

B′C′

A′

D

D′

iA

iC

iB

iA ′

iB ′

iC ′

(a) (b)

Fig.4. The contraction in texture space and
extension in image space

Let the image triangle in image space
corresponding the texture triangle in the texture

space is iii CBA∆ . Since the triangle ABC∆
has been contracted to the triangle ''' CBA∆ in
the texture space, the texture taken from the
image triangle iii CBA∆ should be stored in the
texture triangle ''' CBA∆ . In the image space,
the triangle iii CBA∆ is extended to the triangle

iii CBA ′′′∆ , so the texture in the region between
these two triangles is taken and stored in the gap
between triangles ABC∆ and ''' CBA∆ in the
texture space.

The computation of image triangle extension is a
little complicated than that of texture triangle
contraction, since we do not know the extension
distance. The correspondence between triangles
in the image space and the texture space help us
finding the vertices of iii CBA ′′′∆ using the
concept of barycentric coordinates.

The Cartesian coordinates of vertices ',' BA and
'C are represented through their barycentric

coordinates),,('),,,(' bbbaaa wvuBwvuA and

),,(' ccc wvuC related to the triangle ABC∆ in
the texture space:

++=
++=
++=

CwBvAuC
CwBvAuB
CwBvAuA

bbc

bbb

aaa

'
'
'

 (1)

With the correspondence and the assumption that
texture triangle is an orthogonal projection of the
image triangle, the Cartesian coordinates of
vertices of triangle iii CBA∆ are represented
through the same barycentric coordinates related
to the triangle iii CBA ′′′∆ in the texture space,
which can be written in matrix form:

′
′
′

=

i

i

i

ccc

bbb

aaa

i

i

i

C
B
A

wvu
wvu
wvu

C
B
A

 (2)

Now it is simple to find the extended triangle
iii CBA ′′′∆ , since we known the Cartesian

coordinates of vertices ii BA , , iC and all
barycentric coordinates in the matrix.

For the implementation of texture map
construction, one could extend the image triangle
without obvious computation of the vertices of

iii CBA ′′′∆ . If the mapping between ''' CBA∆ in

texture space and iii CBA∆ is computed, and
using the barycentric coordinates of each pixel
inside the triangle ABC∆ represented by the
vertices of triangle ''' CBA∆ , not the triangle
ABC∆ , the Cartesian coordinates of

corresponding pixel in the image space can be
computed from the same barycentric coordinates
related to the triangle iii CBA ′′′∆ , not the triangle

iii CBA∆ . This implementation has only little
difference with that of using image triangle
extension, but the concept is the same.

5.2. Mapping From Image Space to Texture Space

We use an inverse mapping function to fill the
texture triangle by scanning each pixel in the
triangle and fetch its texture from the
corresponding image triangles. The mapping
function is computed using barycentric
coordinates. As described before that a 3D
triangle may be seen from multiple view points, so
it is better to combine the textures from multiple
image spaces.

For a texel in the texture triangle, the
combination is a weighted sum of textures from
multiple image triangles. The weights are

computed as the cosine of normal vector
→

N of

3D triangle and the inverse view ray
→

R . This
weight computation is carried out in 3D view
space. Calculating the inverse view ray for each
point inside the 3D triangle is time-costly. An
option is to use the normalized areas of projected
image triangles in each image space of a 3D
triangle as the weighting coefficients. The value of
a texel in the texture space and weighting
coefficients of visible image triangles are
computed using formulae in Eq.(3).

∑

∑

=

=

=

=

m

i

m

i

iAiAiw

iPiwt

0

0

)(/)()(

)()(
 (3)

where m means the 3D triangle is visible in m+1
views, while t is the computed texel value inside a
texture triangle, P(i) is the pixel value in the ith
visible image triangle, w(i) is the computed
weighting coefficient for the ith visible image
triangle and A(i) is the area of the ith visible
image triangle.

6. EXPERIMENTAL RESULTS

Two experimental results are shown in this
section. One used synthesized data and the other
used real data. In both experiments, the
contraction distance is set to 1.5 since our
renderer uses bilinear interpolation for sampling.
During texture map construction, the vertices
correspondence is optimized.

Experiment with synthesized data: We
synthesized a cylinder object and render it from 6
different viewpoints with designated camera
parameters. The cylinder object was covered with
a painting through texture mapping. One of
rendered original images is shown in Fig. 5(a).
The dimension of texture file is 512512× . The
contraction distance is 1.5. One of the constructed
texture map is shown in figure 5(b). Two of
rendered images using the constructed texture
map are shown in the same figure. Figure 5(c) is
the image rendered in the same direction with (a),
while (d) is the image rendered after the cylinder
object was rotated o30 to the right.

(a) (b)

(c) (d)

Fig.5. The result with synthesized data

Experiment with real data: The experimental
result with real data is shown in Fig. 6. The 3D
mesh model was established through a method
proposed in [5] and the camera parameters were
calibrated using a method similar to [6]. The
object was set on a rotary table whose rotation
axis was also calibrated. The images were taken
while rotating the table, one of original images is
shown in figure 6(a). We used 6 images separated
with o60 interval to construct the texture map,
one of texture images whose dimensions are

512512× is shown in (b). The contraction
distance also is 1.5. Figure 6(c) shows the
rendered image in the same direction with (a),
while (d) is the rendered image after the object
was rotated o30 to the left.

(a) (b)

(c) (d)

Fig.6. The result with synthesized data

We also rendered the objects with texture map
constructed without triangle contraction and
extension and without optimal vertex
correspondence. By visually observating the
rendered results, they contain more distortions
and noises than the results shown above.

7. Conclusion

We described a means for constructing texture
map from multiple views using texture triangle
contraction and image triangle extension
combined with optimal vertex correspondence.
The distortions and noises in the rendered results
are reduced when using the constructed texture
map. Not only the texture inside a triangle but
also the texture around the traingle are stored in
the texture map, while the storage space was not
increased and remained the same and the visual
quality of rendered images was improved.

REFERENCES
1) P.S.Heckbert, ``Fundamentals of texture

mapping and image warping", Master's thesis,
Computer Science Division, University of
California, 1989.

2) Marc Soucy, Guy Godin and Marc Rioux, ``A
texture-mapping approach for the
compression of colored 3D triangulations",
The Visual Computer, Vol.12, pp.503-514,
1996.

3) Yizhou Yu, Andras Ferencz and Jitendra
Malik, ``Compressing texture maps for large
environments", SIGGRAPH'2000, New
Orleans, Louisana, July 2000

4) Fausto Bernardini, Ioana M.Martin and
Holly Rushmeier, ``High-quality texture
reconstruction from multiple scans", IEEE
Trans. on Visualization and Computer
Graphics, Vol.7, No.4, pp.318-332, 2001.

5) K. Kobayashi, Y. Nakanishi, X. Zhang, M.
Tadenuma, H. Mitsumine, and S. Saito:
``High resolution 3D surface measurement
from multiple viewpoint images",
NICOGRAPH 2000, pp.143-150, 2000.

6) Z. Zhang, ``A flexible new technique for
camera calibration'', IEEE Trans. on Pattern
Analysis and Machine Intelligence, Vol.22,
No.11, pp.1330-1334, Nov. 2000. Also refer to
his website:
http://research.microsoft.com/users/zhang/

