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Abstract Separating the diffuse and specular components from the reflection of a 3D object surface is very important for

generating highly realistic synthesized images in computer graphics applications. Most research on this separation has con-

sidered only the case in which an object is illuminated by a single point light source. However, when an object is illuminated

by one source, it can be difficult or impossible to acquire the real texture information of some visible regions on the object

surface because of shading. To overcome this problem, we used two point light sources to illuminate the object to reduce

the shaded regions. We used an iterative algorithm to estimate the intensity variation curve parameters and to compute the

separation of the two components. To improve the separation quality, we used a weighting function to reduce the effect of

noise contained in the highlight regions. Experiments using both synthesized and real data demonstrated that our method is

effective and produces clear separation.
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1. Introduction

The separation of the diffuse and specular compo-

nents from the reflection of an object’s surface is very

important for generating highly realistic synthesized im-

ages in computer graphics applications1) such as in dig-

ital catalogs for on-line sales and digital content for

TV program production. For most materials, reflection

component separation methods can be categorized into

those that work well for objects with a uniform color

or multiple colors and those that work well for objects

with complicated textures. Research on this separation

initially concentrated on the separation of components

in the reflection from a uniformly colored object or a

multiple-colored object. For uniformly colored objects,

separation is done using color space analysis, which par-

titions a color histogram into clusters to enable compu-

tation2)�4). For multiple-colored objects, separation is

done using two-dimensional chromaticity space analysis

rather than three-dimensional color space analysis7).
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However, most objects have complicated textures,

and these two methods are not suitable for separat-

ing the components in the reflections from objects with

complicated textures. Several methods have been pro-

posed for separating the components in the reflections

from objects with complicated textures. They can

be roughly divided into three categories: polarization

based, photometric stereo based, and image sequence

based.

Nayar et al. used polarization to separate the reflec-

tion components5). They assumed that diffuse reflection

tends to be unpolarized while specular reflection tends

to be partially polarized. In their method, several im-

ages are taken of each 3D point on the object while the

angle of the polarization filter is rotated. The compo-

nents are then separated by analyzing the images from

the different filter angles.

Woodham et al. used a photometric stereo9) method

in which global and local highlight analysis is used to

remove the specular component from the reflection6)8).

Other separation methods include using sequential color

images to obtain a sequence of sample data for each 3D

point on the object surface and using a reflection model

to fit the sampled data and compute the reflectance pa-

rameter of each point10)�12).
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(a) (b) (c)

Fig. 1 Example experimental images of vase surface illuminated by single light source: (a) original image;

(b) separated diffuse component; (c) separated specular component. Note that the separation is

incomplete, especially around the highlight area and that the texture in the shaded region on the

right side was unobtainable.

Our group previously developed a separation method
13) based on a sequence of color images. We estimated

the parameters of a reflection model from an intensity

image sequence to reduce the errors produced during

separation. This enables more effective and stable re-

covery because the fitting is directly based on the raw

RGB data used to compute the model parameters. This

method is limited, however, because it does not work for

shaded regions in the image due to noisy RGB data. We

have now enhaced it so that the object is illuminated

by two light sources.

2. Reason for Using Two Light Sources

Why use two light sources to illuminate the object’s

surface? With only one light source, the real texture

information of some regions on the surface is difficult

or impossible to acquire because of shading, as shown

in Fig. 1(a), which was previously published13). Al-

though the right region of the object (a vase) is shaded,

it can still be viewed from the camera. Since our image-

sequence-based separation method relies on the sampled

intensity data for a 3D point on the object’s surface, all

points should be illuminated when the object is rotated

around a axis. However, it is very hard to judge whether

a point on an object surface is in an illuminated region

or in a shaded region. Using data containing samples in

the shaded region may lead to an incomplete separation.

It is almost impossible to obtain substantial infor-

mation about the texture of a shaded region without

resorting to other means. For the object shown in Fig.

1(a), we used an iterative method described elsewhere13)

to separate the diffuse and specular components. As

shown in Figs. 1(b) and (c), the separation was incom-

plete around the highlight area. This is because the re-

flection model was fitted to intensity variation samples

containing data from the shaded region. The texture of

the shaded region is thus unobtainable.

While illuminating an object surface with more than

one light source enables more information to be ob-

tained for acquiring the texture, too many sources

makes separation difficult. The optimal number of light

sources depends on the complexity of the object shape.

We have modified the previous method13) for esti-

mating the surface reflectance and for separating the

diffuse and specular components from the reflection of

an object to handle illumination by two point light

sources. An iterative method is used to fit a simpli-

fied Torrance-Sparrow model to the reflection variation

data. A weighted method for parameter fitting has been

added to reduce the contagion effect of noise during

computation of the model parameters.

3. Experimental Setup and Data Sam-

pling

The experimental setup for our image-acquisition sys-

tem is similar to the previous one13) except for two point

light sources on each side of the camera. They were in-

candescent lamps with identical characteristics. Assum-

ing that the distances between the light sources and the

object are sufficiently greater than the object diameter,

the lamps can be regarded as point light sources. We

eliminated the ambient light in a room and switched on

only the two point light sources. Color HDTV image

sequences were obtained by rotating a 3D object around
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Fig. 2 Geometry of experimental setup: (a) the relation-

ship between light source directions and view di-

rection; (b) the relationship between view direc-

tion and normal direction.

its axis of rotation in fixed steps; for example, a step of

2◦ resulted in a sequence containing 180 images. Prior

to image acquisition, the intrinsic and extrinsic parame-

ters of the camera were calibrated for object modeling.

The rotation axis of the rotation table was also cali-

brated to improve the accuracy of the computed model.

We used an algorithm similar to Zhang’s14) to calibrate

the HDTV camera and a previously developed method

to calibrate the rotation axis15).

Use of the calibrated camera and rotation axis param-

eters enabled the object model to be computed based on

a previously described modeling method16). Any pixel

on an image can be reprojected onto other images by

using the calibrated parameters to obtain the RGB in-

tensity values of the corresponding image pixels. In our

experiments, the reprojected pixel was resampled as the

average of a small window with a size such as 3×3 pix-

els to reduce random noise under the assumption that

the intensity variation of the image was smooth.

4. Reflectance Properties Estimation

4. 1 Reflection Model Using Two Light

Sources

Figure. 2 shows the geometry of our experimental

setup. To simplify the representation, we drew two di-

agrams to illustrate the relationships between the light

source directions, view direction, and normal direction.

Figure 2(a) does not contain the normal vector, while

Fig. 2(b) does not contain the light source directions.

The vectors shown should be considered to be within

the same coordinate system. The optical axis of the

camera was collinear with the Z-axis, and the rotation

axis of the rotary table was collinear with the Y -axis.

Since object surface reflection can be modeled as a

linear combination of the diffuse and specular reflec-

tion components for each RGB channel2)�4), we use a

simplified Torrance-Sparrow model17) to describe this

combination:

I = Id + Is

= Kd

2
∑

i=1

(Li · N) + Ks

2
∑

i=1

exp(− α2
i

2σ2
), (1)

where L · N is the inner product of two vectors, Li are

the unit direction vectors of the two light sources, N is

the normal of a 3D point on the object surface, Kd is

the diffuse reflection parameter, and Ks is the specular

reflection parameter. Parameters α1 and α2 are the an-

gles between the surface normal and the bisectors of the

light source directions and view direction. The rough-

ness parameter, σ, of a surface is the standard deviation

of a facet slope in the Torrance-Sparrow model.

When polar coordinates (ϕ1, θ1) and (ϕ2, θ2) are used

to express light directions L1 and L2, polar coordinates

(ϕn, θn + θ) are used to express the normal vector N

after θ angle rotation. After expansion of Eq. (1),

and with some mathematical rearrangement, the diffuse

component can be written as a cosine curve equation:

Id = A sin θ + B cos θ + C, (2)

where θ is the rotation angle of the turntable, and pa-

rameters A, B, and C are independent of the rotation

angle.

The specular component of intensity variation is often

modeled approximately as a Gaussian10), so we express

the specular component of the variation curve as

Is =D1exp

(

−
(

E1−θ

F

)2)

+D2exp

(

−
(

E2 − θ

F

)2)

, (3)

where θ is the rotation angle of the turntable, and

F =
√

2σ. Parameters E1 and E2 correspond to the

highlight peak positions in the variation curve. Param-

eters D1 and D2 correspond to the specular reflectance,

Ks.

4. 2 Minimization Problem

The intensity variation curve described in continuous

form in Eqs. (2) and (3) can be easily expressed in a

discrete form by replacing θ with θk, which represents

the rotation angle at the time instant (indexed by k) at

which intensity Ik is sampled. The curve parameters in

Eqs. (2) and (3) are estimated before separating the re-

flection components and computing the reflectance pa-

rameters.
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Using these equations, we can model total reflec-

tion as a nonlinear function. We use the Levenberg-

Marquardt iterative method18) to estimate the curve

parameters that minimize nonlinear fitting error

E =
∑

k

(

I
(

θk;A,B,C,D1, E1,D2, E2, F
)

−Ik

)2

. (4)

However, for the reflection from a 3D point on the sur-

face, the specular reflection is more difficult to model

than the diffuse reflection. Moreover, because of the

camera’s limited dynamic range, the highlight region

may contain more noise than the diffuse region. There-

fore, we use a weighting function to place more weight

on the diffuse than the specular reflection components.

To this end, we construct a weighting function to be the

inverse of the specular reflection:

Wθk
=

[

a+exp

(

−
(

E1−θk

F

)2)

+exp

(

−
(

E2−θk

F

)2)]−m

n

,(5)

where constant a is empirically set between 10−9 and

10−3; this is only to prevent the weighting function be-

coming infinite so that it remains numerically meaning-

ful. The integer parameters m >= 0 and n > 0 are used

to control the shape of the weighting function. As m

becomes larger or n becomes smaller, the dependence

of the weighting function on the diffuse component be-

comes greater. If m/n is very small and approximately

zero, the weighting function is approximately 1. In this

case, all sample data have almost the same weight.

With a weight on each sample datum, the fitting error

(Eq. (4)) can be rewritten as

E =
∑

k

Wθk

(

I
(

θk;A,B,C,D1, E1,D2, E2, F
)

−Ik

)2

.(6)

The definition of the above weighting function shows

that it depends on the coefficients of the intensity vari-

ation curve as well on as the rotation angle. Since we

use the Levenberg-Marquardt iterative method to solve

Eq. (6), the weights should be adapted for each loop

until iteration ends. The initial values of all parameters

were set using a method described elsewhere13).

4. 3 Separation of Reflection Components

When the intensity variation curve parameter in Eqs.

(2) and (3) have been estimated, the separation of dif-

fuse and specular components becomes simple. One way

to solve the separation problem is to use the previously

described method13). However, if the surface reflection

contains very strong specular reflection that overflows

the camera’s limited dynamic range [0-255], the peak

in the intensity variation curve will be flattened in the

rotation range and will not be a sharp Gaussian-like

peak. Gaussian fitting to the specular components will

result in large errors, preventing this method from com-

pletely separating the two components. We mentioned

that modeling of the diffuse component is more accurate

than that of the specular component. Our experiments

confirmed that the curve parameters of the diffuse com-

ponent are more reliable than those of the specular com-

ponent. Therefore, in our implementation, we simply

computed the diffuse component, Id, using the diffuse

reflection model and subtracted it from the sampled

data. We used the result as the specular component.

Because of the noise and sampling errors, for a very

small number of intensity variation curves, the com-

puted diffuse components were negative. For the cor-

responding 3D points, the diffuse and specular compo-

nents were computed using bilinear interpolation. The

separation was carried out independently for each RGB

channel.

4. 4 Computing the Reflectance Parameters

Computing the reflectance parameters requires

knowledge of the light directions measured in advance.

After estimating the curve parameters, we can calculate

the surface normal by combining the parameters with

the known light directions.

Using computed normal vector N and measured light

source directions L1 and L2, we compute the diffuse

reflectance parameter:

Kd =
Id

max{L1·N, 0} + max{L2·N, 0} . (7)

The computation of the specular reflectance parame-

ter is more difficult than that of the diffuse reflectance

parameter. If there is no specular reflection component

in the intensity variation curve, one cannot compute the

specular reflectance parameter. The following compu-

tation is only for 3D points whose intensity variation

curves contain specular components. We used only the

largest peak to compute the reflectance parameter.

Without loss of generality, suppose D1 >= D2. This

means that when the object is rotated E1 degrees, the

specular component reaches its maximum. We denote

the bisector between light source direction L1 and view

direction V as Lb1. When the specular component

reaches its maximum, and if the angle between bisector

Lb1 and the normal vector is β, the specular reflectance

can be approximately computed using

Ks = D1 exp
(

−(β/F )2
)

. (8)

We calculated Ks for each RGB channel, while the

4 ( 4 )
����� !"#$%

Vol. 57, No. 1 (2003)



(a) (b) (c) (d)

Fig. 3 Example experimental results with synthesized images: (a) image used; (b) separated diffuse com-

ponent; (c) separated specular component and (d) image representation of diffuse parameter Kd.

normal vector takes the averaged value from three chan-

nels.

From the definition of curve parameter F in Eq.

(3), roughness parameter σ is approximately given as

σ =
√

2F/2.

5. Experimental Results

We performed experiments using synthesized and real

data obtained from an image sequence to verify the ef-

fectiveness of the weighted separation for computing the

two components.

Synthesized images: We first synthesized an image

sequence of a cylindrical object using a mechanism sim-

ilar to the real experimental setup through a virtual

camera. A texture was mapped onto the surface. Dif-

fuse and specular reflection components were added to

images with 640 × 480 resolution. We took the object

shape as unknown and reconstructed it using the mod-

eling method mentioned above16). Each 3D point on

the surface was reprojected onto images using camera

parameters while the object was rotating about its axis.

From this, we obtained the intensity variation curve for

each 3D point. The sampled data were then fed into

our iterative algorithm to compute curve parameters

and then the two reflection components were separated

and the reflectance parameters were computed.

Figure 3 shows example experimental results for a

synthesized image. Note that the value of diffuse pa-

rameter Kd is independent of the light source direction.

Real images: The real images were acquired using the

same method described as before13), except for the two

light sources on both sides of the HDTV camera.

Figure 4 shows example experimental results for an

real image. Using the method described in section 4.4,

we computed the diffuse reflectance parameters, which

are represented as an image in Fig. 4(f). This image is

independent of the light source direction. Comparison

of the images in Figs. 4(d and e) with those in Figs.

1(b and c) shows that the diffuse component of the re-

flection from an object illuminated by two light sources

provides more visual information about the real texture

than that of an object illuminated by one light source.

Due to resolution and printing problems, it is difficult

to see the difference between the results with weighting

(Figs. 4(d) and (e)) and without weighting (Figs. 4(b)

and (c)). To demonstrate that weighting improves the

results of separation, we show close-ups of the same

areas in Figs. 4(g)-(j). Figure (g) is from separated

diffuse component (b) without weighting, while (h) is

from separated diffuse component (d) with weighting.

Careful visual inspection shows that the portions on the

left and right of the highlight in (g) appear dirty yellow-

ish while those in (h) are cleaner and coincide with the

surface texture of the actual object. The improvement

can also be confirmed by visually comparing Fig. 4(i),

which is the close-up specular component (c) separated

without weighting, with Fig. 4(j), which is the close-up

specular component (e) separated with weighting. The

component has abrupt variations on the two sides of

each highlight area in Fig. 4(i), while the variations in

Fig. 4(j) are smoother and coincide with the shape of

the actual object.

6. Conclusion

We have developed a method for separating the dif-

fuse and specular components in the reflection from an

object illuminated by two light sources. Using two light

sources reduces the size of shaded region, enabling suffi-

cient visual information to be obtained for acquiring the

texture of the object. A weighting function was used to

minimize the incomplete separation due to noise, the

camera’s limited dynamic range, etc. Our experimental
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results show that the proposed method is effective and

produces clear separation. We plan to use it in experi-

ments using objects with different shapes and with area

light sources.
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(a) (b) (c)

(d) (e) (f)

(g) (h)

(i) (j)

Fig. 4 Example experimental results with real images: (a) image used; (b) and (c) separated diffuse and

specular components without weighting; (d) and (e) separated diffuse and specular components

with weighting; (f) image representation of diffuse reflectance parameters; and (g), (h), (i), and (j)

close-ups of regions containing the right highlight of Figs. (b), (d), (c), and (e).
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